General internists at the hospital: cost savers or big spenders?

Pedro PB^{1,2} Sara RM¹

¹Universidade Nova de Lisboa

 $^{2}CEPR$

October 2009

イロン イロン イヨン イヨン 三日

1/14

Introduction

Motivation Methodology

Methodology

Estimation methods The data

Results

Matching Probits

Conclusion

Motivation Methodology

- Are the internists working at your hospital big spenders? Or do they help saving costs?
- One might be tempted to take the amount of money they spend as their contribution to the hospital budget

Motivation Methodology

- Are the internists working at your hospital big spenders? Or do they help saving costs?
- One might be tempted to take the amount of money they spend as their contribution to the hospital budget
- What lies beneath those costs?

Motivation Methodology

Methodology

1. Production function

Motivation Methodology

- 1. Production function
- 2. Production outcomes

Motivation Methodology

- 1. Production function
- 2. Production outcomes
 - Resource utilization

Motivation Methodology

- 1. Production function
- 2. Production outcomes
 - Resource utilization
 - Health outcome

Motivation Methodology

<ロ> (四) (四) (三) (三) (三)

4/14

- 1. Production function
- 2. Production outcomes
 - Resource utilization
 - Matching estimators
 - Length of stay
 - Health outcome

Motivation Methodology

- 1. Production function
- 2. Production outcomes
 - Resource utilization
 - Matching estimators
 - Length of stay
 - Health outcome
 - Probit
 - Change in the probability of death

Estimation methods The data

Matching estimators

- First best
 - to have the same patient treated in both types of services

Estimation methods The data

Matching estimators

- First best
 - to have the same patient treated in both types of services
 - compare resources and outcome

Estimation methods The data

Matching estimators

- First best
 - to have the same patient treated in both types of services
 - compare resources and outcome
- Abadié & Imbens (2002) define two groups, match the observations

(ロ) (四) (E) (E) (E)

Estimation methods The data

Matching estimators

- First best
 - to have the same patient treated in both types of services
 - compare resources and outcome
- Abadié & Imbens (2002) define two groups, match the observations
 - 1. define measure of distance covariates
 - 2. measure effect of the treatment both in the whole sample (SATE) and in the treated ones (SATT)

<ロ> (四) (四) (三) (三) (三)

- Goal: estimate what drives the probability of leaving the hospital alive
- Same covariates as in the matching process

- Goal: estimate what drives the probability of leaving the hospital alive
- Same covariates as in the matching process
- Sign and magnitude of the internal medicine marginal effect

- Portuguese hospitals, 2005
- Diagnosis Related Group (DRG) database

- Portuguese hospitals, 2005
- Diagnosis Related Group (DRG) database
 - age
 - gender
 - length of stay
 - service codes
 - ICD-9-CM codes for diagnosis and procedures
 - discharge

Estimation methods The data

- Portuguese hospitals, 2005
- Diagnosis Related Group (DRG) database
 - age
 - gender
 - length of stay
 - service codes
 - ICD-9-CM codes for diagnosis and procedures
 - discharge
- Patient complexity and comorbidity measured by

(ロ) (同) (E) (E) (E)

Estimation methods The data

- Portuguese hospitals, 2005
- Diagnosis Related Group (DRG) database
 - age
 - gender
 - length of stay
 - service codes
 - ICD-9-CM codes for diagnosis and procedures
 - discharge
- Patient complexity and comorbidity measured by
 - Charlson comorbidity index (CCI) Deyo approach
 - Index for procedure complexity
 - Observation room (OR)

(ロ) (同) (E) (E) (E)

Estimation methods The data

Selecting the observations

 Focus on speficic type of DRG - patients can be assigned to both internal medicine and specialty

			I	DRG			
Pneumology	79	82	88	89	90	96	97
Cardiology	127	134	138	139	140		
Gastroenterology	174						
Nephrology	316						

 Valid observation: the patient was treated at either internal medicine or the corresponding specialty

Matching Probits

Matching estimates per DRG (1)

Figure: Stata output: DRG 88 - Average treatment effect (SATE)

Matching estimat	or: Average	Treatment	Effect
------------------	-------------	-----------	--------

Weighting matrix: inverse variance	Number of obs	=	1683
	Number of matches	(m) =	1

los	Co	oef. S	Std. H	Err.	z	₽> z		[95%	Conf.	Inte	erval]
SATE	-1.40	8693	. 674	2706 -	2.09	0.0	137	-2.	73023	9	0871467
Matching varia feir				-	-	-			-		-

Bias-adj variables: so g_cci sexo gravidade age age2 amad vise guar covi guim feir

・ロ・・雪・・雪・・雪・ うらぐ

Matching Probits

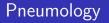

Matching estimates per DRG

Figure: Sign and significance level for each DRG

		SATE(1)	SATE(4)	SATT(1)	SATT(4)			SATE(1)	SATE(4)	SATT(1)	SATT(4)
	79	-	-	-	-		127	_***	_***	_***	_***
20	82	+**	+**	+***	+***	ogy	134	-	+	-	-
log	88	_**	_**	-	-	olc	138	-	-	+	+
ũ	89			-	-	ardiol	139	+***	+***	+	+
Pneumology	90	-	-	-	-	പ	140	+	+	+	+
Pn	96	-	+	-	-						
	97	+**	+	+	-	G	174	+***	+***	+***	+**
						Ν	316	-	-	_**	_***

SATE:Sample average treatment effect

SATT: Sample average treatment effect for the treated group m(1) - one match m(4) - match the average of the closest four

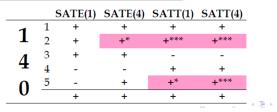
Figure: Sign and significance level for each top 5 hospital

Matching

		SATE(1)	SATE(4)	SATT(1)	SATT(4)
	1	-***	-***	-*·*·*·	_*·*·*·
	2	+	+	+	+
8	3	+	+	+	+
	4	+**	+**	+**	+**
9	5	+***	+***	+***	+***
		-	-	-	-

SATE(1) SATE(4) SATT(1) SATT(4)

		-	-	-	-
υ.	5	_*	_**	_**	_***
Δ	4	+	+	+	+
9	3	-	-**	-	-
9	2	+***	+***	+***	+***
	1	-	-	-	-


≣ ৩৭ে 11/14

Cardiology

Figure: Sign and significance level for each top 5 hospital

Matching

		SATE(1)	SATE(4)	SATT(1)	SATT(4)
1	1	+	+*	-	-
T	2	+***	+***	+***	+***
2	3	- ^{***}	_*·*·	-	-
3	4	-***	-***	-***	-***
4	5	_ *****	+***	-***	+***
4		-	+	-	-

12/14

Matching Probits

Mortality - Probit estimates per DRG

Figure: Marginal effects per DRG


DRG	Marginal effect	DRG	Marginal effect
79	-0.086 **	90	-0.085***
82	n.s.	96	-0.071***
88	n.s.	127	-0.064***
89	-0.058***	316	n.s.
			F0/ 10/

Significance levels: *: 10% **: 5% ***: 1%


► Mg. effect =-0.086 ⇒ the probability of alive discharge decreases by almost 9% if the patient was treated in internal medicine, when compared to pneumology

Are the internists working at your hospital big spenders? Or do they help saving costs?

- Are the internists working at your hospital big spenders? Or do they help saving costs?
- There is evidence that the internal medicine affects health care production in an inpatient setting

- Are the internists working at your hospital big spenders? Or do they help saving costs?
- There is evidence that the internal medicine affects health care production in an inpatient setting
- In some cases, it decreases resource utilization (measured by the length of stay), but the reverse is also true

- Are the internists working at your hospital big spenders? Or do they help saving costs?
- There is evidence that the internal medicine affects health care production in an inpatient setting
- In some cases, it decreases resource utilization (measured by the length of stay), but the reverse is also true
- The probability of death has shown to be higher if the patient is treated in the internal medicine, *caeteris paribus*