Are we getting there?

The pursuit of health equity in Portugal

Professor Pedro Pita Barros

Joana Pinto Leite

- 1. Introduction
- 2. Methodology
- 3. Results
 - ⇒ Barriers to access
 - → Portugal
 - ⇒ Portuguese regions
- 4. Simulation process
 - → Portugal
- 5. Conclusion

Introduction

- Two basic principles National Health Service
 - \rightarrow the tendency to be a free system at the point of consumption
 - \rightarrow the universality and general access to the system
- Different levels of health care utilization:
 - \rightarrow not able to access the system (utilization is zero)
 - \rightarrow not able to consume more medical services (utilization is 0,1,2,3,...)
- Horizontal (in)equality concept (HI)
 Equal treatment of equals
- 4ºINS 2005/2006 fourth survey of national health

Introduction

Methodology

Methodology

- Actual utilization: number of consultations
- Needed-utilization:

need variables (health status, age)

non-need variables (education, income, region, occupation)

the omitted variables bias problem

\rightarrow apply a fixed value to all non-need variables (normalized to their mean)

$$\hat{y}_i^N = G\left(\sum_N \hat{\beta}_N x_i^N + \sum_{NN} \hat{\beta}_{NN} \overline{x}_i^{NN}\right)$$

- → discrete data
- \rightarrow excess zeros = barrier to access the system

Methodology

Simulatior

Conclusion

Methodology

$HI = CI_u - CI_n$

CI of actual utilization

considers the characteristics of each individual (and their differences)

CI of needed-utilization

reflects the necessity that the population has if individuals had the same level of non-need factors (region, education,...)

Inequity that arises exactly because individuals are not equally treated even after the different levels of need have been accounted for

Methodology

Results

Simulatio

Conclusion

Results: Barriers

"Excess zeros": those who would be expected to have health assistance do not actually receive it

	Coef.	Std. Dev.	P-value
inflate			
income	-0,00311	0,001	0
age	-0,08311	0,011	0
education	0,07337	0,025	0
public_subsystem	-0,30922	0,465	0,51
private_subsystem	0,62201	0,644	0,33
insurance_no	12,25788	417,863	0,98
_cons	-11,95733	417,863	0,98

- 1. As the income raises the chance to have zero consultations decreases
- 2. As older one gets the barriers to accede the system decrease
- 3. As the number of school years increases the chance of not having consultations also increases

Results

Results: Portugal

The Portuguese health system appears with relatively high inequity

Bago d'Uva et al (2006)			
Country	HI for general practitioner visits	HI for specialist visits	
Belgium	-5,30.	3,40.	
Greece	-1,60.	7,30.	
Italy	-2,70.	9,60.	
Netherlands	-2,80.	2,60.	
Portugal	1,80.	19,90.	
Spain	-3,90.	8,30.	

Estimating the zinb model:

	Cl u	Cl n	HI(%)
Portugal	0,0106	-0,0268	3,74.

- The health system favours the better-off
- Poorer individuals consumed less medical services but the ones who need more those services

Results

Results: Regions

But... are there differences across the Portuguese regions?

	Cl u	Cl n	HI(%)
Norte	0,0302	-0,0278	5,80.
Centro	-0,0184	-0,0499	3,15.
Lisboa_ValeTejo	0,003	-0,0433	4,63.
Alentejo	-0,0146	-0,0369	2,23.
Algarve	-0,0349	-0,0279	-0,70.
Açores	0,0548	-0,0112	6,60.
Madeira	0,0559	0,007	4,89.

Resu

10

Simple linear regression

Dependent variable: HI

Independent variables:

- ⇒ Mean income
- ⇒ Percentage of unemployed individuals
- ⇒ Percentage of individuals with more than three chronic diseases
- ⇒ Percentage of individuals with no private insurance
- ⇒ Percentage of individuals that are part of a public subsystem
- ⇒ Percentage of individuals that are part of a private subsystem
- ⇒ Percentage of individuals with more than 65 years
- \Rightarrow Mean income of the 5% / 10% / 25% poorest individuals

Simulation

National analysis

Coef.	Duralura
0001.	P-value
0,0002	0,04
-0,6297	0,06
-0,0886	0,37
	-0,6297

- 1. A generalized increase in income does not by itself reduce inequity
- 2. A structure that supports individuals with several chronic diseases promotes equity
- 3. The ageing of the population by itself does not determine inequities
- 4. Increasing the average number of schooling will not diminishing health inequity
- 5. Public and private subsystems do not influence health inequity

Simulation

Conclusion

- 1. Barriers to access income
- 2. Pro-rich system at a national level
 - \rightarrow the richest individuals consumed more but have less need
- 3. Policies should not worried with the inevitable ageing of population,
- 4. Economic growth does not seem, at least by itself, to solve the problem of inequity
- 5. Disparities across the Portuguese regions

Conclusion

- 6. Keep with the regional analysis in further investigations
- 7. Use the decomposition process in further analysis

Thank you

S <u>Regional analysis</u> \rightarrow fixed effects model: $HI = \alpha_i + \sum \beta_j \chi_j$

Variables	Coef.	P-value
meanincome	0,000	0,324
more_3_chronic diseases	-0,1734	0,598
unemployed_mean	-0,3398	0,432
income5perc	-0,0003	0,327
income10perc	0,000	0,734
ncome25perc	0,000	0,729
more_than_65	0,2207	0,443
education_mean	0,0203	0,396
private_sub.	-1,0753	0,052
public_sub.	0,0410	0,861
insurance.	-0,2238	0,523
_cons	0,1826	0,645

- 1. The higher the percentage of individuals part of a private subsystem the lower the average HI
- 2. Differences in the regional average income does not motivate regional health disparities
- 3. Differences in the regional ageing of the population by itself does not determine regional inequities

15

Simulation

Need indicators

- health status
- ever smoked
- sick for less/more than 3 months
- disable temporary / permanently
- gender
- age ; age²
- male*age ; male*age²

Non-Need indicators

- schooling years
- marital status
- occupational status
- nationality
- equivalent income

$$I_{ik} = \frac{\overline{I}_{ik}}{S_k^{\varepsilon}}$$

- region
- private insurance
- subsystem

Database: 4ºINS

	Real distribution of the pop	%	2nd version NHS distribution	%
Norte	3745236	35%	6100	15%
Centro	2385911	22%	5950	14%
Lisboa_ValeTejo	2808414	26%	6008	15%
Alentejo	760933	7%	5777	14%
Algarve	426386	4%	6175	15%
Açores	244006	2%	5961	14%
Madeira	246689	2%	5332	13%
Total	10617575	100%	41303	100%

- 1. Equivalent income + no weights
- 2. Aggregate income + weighted according to the real distribution of the population

Chronic diseases

- 1. Diabetes
- 2. Asthma
- 3. Blood_pressure
- 4. Chronic_pain
- 5. Rheumatism
- 6. Osteoporosis
- 7. Glaucoma
- 8. Retinopathy
- 9. Cancer
- 10. Kidney_stones
- 11. Renal_failure
- 12. Chronic_anxiety_disorder
- 13. Chronic_wound
- 14. Emphysema
- 15. Cerebral_hemorrhage_ICH
- 16. Obesity
- 17. Depression
- 18. Myocardial_infarction

18

Chronic diseases

Equivalent income:
$$I_{ik} = \frac{I_{ik}}{s_k^{\varepsilon}}$$

$$I_{ik} = \frac{4000}{1^{0.6}} = 4000$$

Equivalent income

	Aggregate income (mo	nth)
	income class	Mid-point
A]0,€150]	75
В]€150,€250]	200
С]€250,€350]	300
D]€350,€500]	425
E]€500,€700]	600
F]€700,€900]	800
G]€900,€1200]	1050
н]€1200,€1500]	1350
I]€1500,€2000]	1750
J	more than €2000	4000

Individual equivalent income:

$$I_{ik} = \frac{\overline{I}_{ik}}{s_k^{\varepsilon}}$$

- I_{ik} Equivalent income
- $\overline{I_{ik}}$ Mid-point of each class
- S_k Family size
- *E* Elasticity of income-family size

$$I_{ik} = \frac{4000}{1^{0.6}} = 4000 \qquad I_{ik} = \frac{1750}{1^{0.6}} = 1750 \qquad I_{ik} = \frac{1750}{2^{0.6}} = 1154,57$$

Evaluation: HI (std dev)

		Restricted model			Unrestricted model	
Variables	Coef.	Std. Dev.	P-value	Coef.	Std. Dev.	P-value
meanincome	0,0002	0	0,04	0,0001	0,00	0,63
more_3_chronic diseases	-0,6297	0,34	0,06	-0,6798	0,37	0,07
unemployed_mean	-	-	-	-0,3665	0,49	0,45
income5perc	-	-	-	-0,0006	0,00	0,18
income10perc	-	-	-	-0,0001	0,00	0,81
income25perc	-	-	-	-0,0002	0,00	0,70
std. dev.	-	-	-	0,0001	0,00	0,69
more_than_65	-	-	-	0,2729	0,33	0,40
education_mean	-	-	-	0,0214	0,03	0,46
private_sub.	-	-	-	0,0942	0,53	0,86
public_sub.	-	-	-	-0,0035	0,26	0,99
insurance.	-	-	-	-0,0260	0,36	0,94
_cons	-0,0886	0,09	0,37	-0,0256	0,43	0,95

- The redistribution of income does not seem to influence health inequities
- A generalized increase in income does not solve health inequities
- The system is able to detect and support those with higher need

Barriers to access

Inflate	Coef.	Std. Dev.	P-value
age	-0,08629	0,01	0,00
education	0,04620	0,03	0,08
public_subsystem	-13,32199	428,49	0,98
private_subsystem	-15,99033	1913,82	0,99
insurance_no	14,55290	697,40	0,98
_cons	-15,28230	697,40	0,98

Even when income is not consider as a potential barriers to access the heath system...

... as age increases the barriers to access decrease

- ... as education increases the barriers to access increase
- ... private subsystem, public subsystem and having no private insurance do not represent a barrier to access

Clu and Cln

		Variables that influence CIu and CIn
National case	CIu	 mean income of the 5% poorest individuals + average education
	Cin	none
Regional case	CIu	- percentage of individuals that are part of a private subsystem
	Cin	 mean income percentage of individuals older than 65 years percentage of individuals with no private insurance

	Kakwani et al. (1997)
Title	Socioeconomic inequalities in health: measurement, computation and statistical inference
Question	The best way to measure inequality
How to calculate inequity	Concentration index - $CI = \frac{2 \times cov(y_i, R_i)}{\overline{y}}$
	Concentration curve - L(s)
Variables	Pre-tax household income per equivalent adult Self-assessed health and presence of chronic illness Age and gender (for standardizatiion)
Results	Even after taking into account the demographic structure of the sample, inequalities in health favour the better-off Inequality is more pronounced if health is measured by sah than if it is measured by chronic illness

Bago d'Uva (2006)		
Title	Measurement of horizontal inequity in health care utilization using European panel data	
Question	Is utilization of health care distributed according to need, irrespective to income?	
How to calculate inequity	Short-run $HI_t = CI_{ut} - CI\left(\hat{y}_{it}^N\right)$	
	Long-run $HI_T = CI_{uT} - CI\left(\hat{y}_{iT}^N\right)$ (average predicted number of visits across periods)	
Variables	Utilization - GP consultations and specialists consultations	
	Need indicators - self assessed health - any chronic physical or mental health problem, illness or disability - age; age2; gender; age*gender; age2*gender	
	Non-need indicators - education; marital status; activity status - time dummies	
Results	Pro-poor inequity in GP visits in most countries Pro-rich inequity in specialist visits in all countries Portugal as the highest pro-rich inequity in specialist visits and one of the highest in GP visits The pro-poor inequity in GP visits in most countries and the pro-rich inequity in specialist visits in all countries does not change with the long- run analysis	

Simões, Paquete and Araújo (2008)		
Title	Equidade horizontal no acesso a consultas de clínica geral, cardiologia e medicina dentária em Portugal	
Question	Inequity in the public, the private and public-private health care systems	
How to calculate inequity	$HI = CI_u - CI_n$	
Variables	Utilization - number of consultations (private, public and mixed systems)	
	Necessity - public: self-assessed health; disabled temporarily; diabetes; - private: pain or emergencies; remove a teeth; - mixed: physical activity; smoking; obesity;	
Results	The private, the public and the mixed systems appear as pro-rich systems	

Pereira (1992)		
Title	Horizontal equity in the delivery of health care in Portugal	
Question	Is inequity in health care being achieved?	
How to calculate inequity	$HI = CI_{(exp enditure)} - CI_{(morbidity)}$	
Variables	Utilization - WTP: multiply the number of consultations, on an individual basis, by their respective prices	
	Need - sah - incapacity or restricted activity due to an illness which had been present for over than three months - incapacity to perform "normal" tasks or roles	
Results	Even though the poor are favoured in terms of health care utilization, the system favours the wealthier individuals	

Pereira et al. (1985)		
Title	Equidade geográfica no sistema de saúde Português	
Question	Regional disparities concerning health care inequity	
How to calculate inequity	Correlation techniques - correlation between two groups of indicators in a region - correlation between several groups of indicators - variation between discticts - coeficient of variation (national std. dev./national mean) and relation of the extreme values	
Variables	 Health indicators: infant mortality rate (perinatal, neonatal, post-neonatal Health care indicators: supply of health care resources (beds, number of doctors) utilization (consultations, exames,) heath care expenditure Socio-economic indicators (education, urbanization,) Demographic indicators (% > 65 years, % <4 years, fecundation rate,) 	
Results	Districts with more medical resources benefit from higher public expenditure Districts with lower levels of health had fewer medical resources, lower supply of medical resources and lower public expenditure Urban, industrialied and wealthier disctricts use more health care services Inequities are stonger in the access of primary care services	

Or et al. (2008)

Title

Impact of health care system on socioeconomic inequalities in doctor use

Question

Regional disparities concerning health care inequity

How to calculate inequity

	$C_{ij} = 1$	if at least one visit		$C_{ij} = 1$	$if \ C_{ij}^* > 0$
1	$C_{ij} = 0$	if zero visits	⇒ ~	$C_{ij} = 0$	$if C_{ij}^* < 0$

Multilevel logistic regression Probability of care consumption by i in country j the size and the direction of the social inequity in health care utilization

 $C_{ij}^* = \alpha_{oj} + x_{ij}\alpha_{1j} + z_{ij}\gamma_j + u_{ij}$

The impact of social status differs across countries

the proportion of the variation in health care utilization that can be explained by social status, controlling for other determinants of demand and unobserved factors

 $C_{ij}^{*} = (\beta_o + \mu_{oj}) + x_{ij}(\beta_1 + \mu_{1j}) + z_{ij}\pi + e_{ij}$

Introducng health system characteristics the explanaition of observed social inequities by introducing a number of health systems characteristics

 $C_{ij}^{*} = (\beta_o + \mu_{oj}) + x_{ij}(\beta_1 + w_j \tau_k \omega_{1j}) + z_{ij} \pi + e_{ij}$

Variables	Health care utilization: GP visits and specialist visit Social status: education Health needs: self reported health and body mass index Individual variables: age, gender, urbanization
	Health system characteristics: doctor availability, the methods of physician
Results	Higher education increases the consumption of specialist consultations The probability of visiting a doctor increases after 50 years of age The BMI does not influence utilization of specialist consultations Portugal - well-educated tend to use more GP and specialist consultations

Machenbach et al. (2008)		
Title	Socioeconomic inequalities in health in 22 European countries	
Question	Identify opportunities for the reduction of inequalities	
How to calculate inequity	Relative inequality index	
	ratio between the estimated mortality/morbidity/risk factor among persons at rank 1 (the lowest education, occupation or income level) and rank 0 (the highest level)	
	Slope index of inequality $slope = \frac{2*mortality rate*(RII-1)}{2}$	
	Slope index of inequality $slope = \frac{1}{RII + 1}$	
Variables	Mortality - age, gender, causes of death, indicators of SES Morbidity - self-assessed health Risk factors of disease - smoking and obesity	
Results	In general, mortality was higher for those countries with lower education, which have smoking and/or alcoholic habits Lower ranked individuals (socioeconomical terms) assessed their health in lower levels	

Decomposition process

The concentration index is given by

$$CI = \frac{2 \times \operatorname{cov}(y_i, R_i)}{\overline{y}}$$

The decomposition process is based on the covariance formula

$$\operatorname{cov}(y_i, R_i) = E\left[(R_i - \overline{R})(y_i - \overline{y})\right]$$

If our analysis is based on a linear model

$$\operatorname{cov}(y_i, R_i) = E\left[(R_i - \overline{R})(\alpha_0 + \alpha_1 x_i + e_i - \alpha_0 - \alpha_1 \overline{x})\right]$$

$$\operatorname{cov}(y_i, R_i) = \alpha_{1k} E\left[(R_i - \overline{R})(x_{ik} - \overline{x}_k) \right]$$

$$\operatorname{cov}(y_i, R_i) = \frac{\hat{\alpha}_{1k}}{N} \sum_{i=1}^{n} \left[(R_i - \overline{R})(x_{ik} - \overline{x_k}) \right]$$

$$\operatorname{cov}(y_i, R_i) = \frac{\hat{\alpha}_{1k}}{N} \operatorname{cov}_k(x_{ik}, R_i)$$

- y_i analyzed variable
- $\overline{\, \mathcal{V} \,}$ the national average of y_i
- R_i rank
- \overline{R} the national average rank

cov(.) - covariance

The zinb model

$$y_{i} \sim \begin{cases} 0 & with \quad probability \quad \varphi_{i} \\ \\ g(y_{i} | x_{i}) & with \quad probability \quad 1 - \varphi_{i} \end{cases}$$

 $g(y_i|x_i)$ represents a negative binomial distribution:

 α Degree of over dispersion

11. . . 11. . . .

 $\mathbf{\alpha}$

Concentration index

According to Kakwani et al.:

$$CI = 1 - 2\int_{0}^{1} L(s)ds$$

$$CI = \frac{2}{N\mu} \sum_{i=1}^{N} w_i y_i R_i - 1$$

Where

$$\mu = \frac{1}{N} \sum_{i=1}^{N} w_i y_i$$
$$R_i = \frac{1}{N} \sum_{j=1}^{i-1} w_j + \frac{1}{2} w_i$$

 $1 \xrightarrow{N}$

 μ Weighted mean utilization of the sample

N Sample size

 W_i Sampling weight of each individual

Weighted relative fractional rank of each individual R_i

or the weighted cumulative proportion of the population up to the mid-point of each individual weight

CI can be computed conveniently using μ and R_i :

$$CI = \frac{2}{N\mu} \sum_{i=1}^{N} w_i (y_i - \mu) (R_i - \frac{1}{2}) \qquad \Rightarrow \qquad CI = \frac{2}{\mu} \operatorname{cov}_w (y_i, R_i)$$

Name	Definition
diabetes	takes value 1 if the individual has diabetes; 0 otherwise
asthma	takes value 1 if the individual has asthma; 0 otherwise
blood_pressuree	takes value 1 if the individual has blood pressure; 0 otherwise
chronic_pain	takes value 1 if the individual has a chronic pain; 0 otherwise
rheumatism	takes value 1 if the individual has rheumatism; 0 otherwise
osteoporosis	takes value 1 if the individual has osteoporosis; 0 otherwise
glaucoma	takes value 1 if the individual has glaucoma; 0 otherwise
retinopathy	takes value 1 if the individual has retinopathy; 0 otherwise
cancer	takes value 1 if the individual has cancer; 0 otherwise
kidney_stones	takes value 1 if the individual has kidney stones; 0 otherwise
renal_failure	takes value 1 if the individual has a renal failure; 0 otherwise
chronic_anxiety_disorder	takes value 1 if the individual has a chronic anxiety disorder; 0 otherwise
chronic_wound	takes value 1 if the individual has a chronic wound; 0 otherwise
emphysema	takes value 1 if the individual has emphysema; 0 otherwise
cerebral_hemorrhage_ICH	takes value 1 if the individual has a cerebral hemorrhage (ICH); 0 otherwise
obesity	takes value 1 if the individual has obesity; 0 otherwise
depression	takes value 1 if the individual has a depression; 0 otherwise
myocardial_infarction	takes value 1 if the individual has a myocardial infarction; 0 otherwise
others	takes value 1 if the individual has other chronic disease; 0 otherwise
ever_smoked	takes value 1 if the individual has ever smoked; 0 otherwise
disable_permanently	takes value 1 if the individual has being disable permanently; 0 otherwise
disable_temporarily	takes value 1 if the individual has being disable temporarily; 0 otherwise

Name	Definition
sick_ST	takes value 1 if the individual has being sick for less than 3 months; 0 otherwise
sick_LT	takes value 1 if the individual has being sick for more than 3 months; 0 otherwise
age	age (years)
age2	age squared (years)
male	takes value 1 if male; 0 if female
education	years of school
married	takes value 1 if married; 0 otherwise
married_separate_property	takes value 1 if married with separate property; 0 otherwise
divorced	takes value 1 if divorced; 0 otherwise
widowed	takes value 1 if widowed; 0 otherwise
employed	takes value 1 if employed; 0 otherwise
military_service	takes value 1 if doing the military service; 0 otherwise
housekeeper	takes value 1 if the individual is a housekeeper; 0 otherwise
unemployed_less_1year	takes value 1 if unemployed for less than 1 year; 0 otherwise
unemployed_more_1year	takes value 1 if unemployed for more than 1 year; 0 otherwise
retired	takes value 1 if retired; 0 otherwise
looking_1st_job	takes value 1 if looking for the 1st job; 0 otherwise
unpaid_inernship	takes value 1 if in an unpaid internship; 0 otherwise

Name	Definition
portuguese	takes value 1 if Portuguese; 0 foreign
income	equivalent income (per month)
Norte	takes value 1 if North; 0 otherwise
Centro	takes value 1 if Centro; 0 otherwise
Lisboa_ValeTejo	takes value 1 if Lisboa and Vale do Tejo; 0 otherwise
Alentejo	takes value 1 if Alentejo; 0 otherwise
Açores	takes value 1 if Açores; 0 otherwise
Madeira	takes value 1 if Madeira; 0 otherwise
insurance_no	takes value 1 if the individual has no private health insurance; 0 otherwise
private_subsystem	takes value 1 if the individual is covered by a private subsystem; 0 otherwise
public_subsystem	takes value 1 if the individual is covered by a public subsystem; 0 otherwise
utilization	actual utilization
rankincome	rank income
mean_sah	average self-assessed health
meanincome	average income
more_3_chronic diseases	percentage of individuals with more than 3 chronic diseases
unemployed_mean	percentage of unemployed individuals
income5perc	average income of the 5% poorest individuals
income10perc	average income of the 10% poorest individuals
income25perc	average income of the 25% poorest individuals
more_than_65	percentage of individuals with more than 65 years
education_mean	average number of school years
private_sub.	percentage of individuals covered by a private subsystem
public_sub.	percentage of individuals covered by a public subsystem
insurance.	percentage of individuals that have no private health insurance

Consultations distribution

- Acton, J.P. (1975) *Nonmonetary factors in the demand for medical services: some empirical evidence.* The Journal of Political Economy, 83 (3), 595-614.
- Allin, S. (2006) Equity in the use of health services in Canada and its provinces. London, London School of Economic and Political Science Health.

Aronson, J.R., P. Johnson and P.J. Lambert (1994) Redistributive effect and unequal tax treatment. Economic Journal, 104, 262-270.

- Bagod'Uva, T. and J.M.C. Santos Silva (2002) *Asymmetric Information in the Portuguese Health Insurance Market. ISEG.* UniversidadeTécnica de Lisboa. Mimeo.
- Bagod'Uva, T., A. Jones and E. van Doorslaer (2007) *Measurement of horizontal inequity in health care utilization using European panel data*. Amsterdam, Tinbergen Institute.
- Barros, P.P. (2005) Economiadasaúde. Coimbra, Almedina.
- Botelho, L.M.C.S. (1997) Equidadenautilização de cuidados de saúde: estadosdalista de esperaparaconsultaexterna de ginecologia no hospital distrital de Aveiro. Revista Portuguesa de SaúdePública, 15 (2), 45-71.
- Brurström, B. And P. Fredlund (2001) Self rated health: is it as good predictor of subsequent mortality among adults in lower as well as in higher social classes? Journal of Epidemiology and Community Health, 55, 836-840.
- Cameron, A.C. and P.K. Trivedi (1986) *Econometric models based on count data: comparisons and applications of some estimators and tests.* Journal of Applied Econometrics, 1, 29-53.

Cameron, A.C. and P.K. Trivedi (1998) Regression analysis of count data. Cambridge, UK, New York, Cambridge University Press.

Cameron, A.C. and P.K. Trivedi (2005) *Microeconometrics: methods and applications.* New York, Cambridge University Press. *de SaúdePortuguês*, V Jornadas de EconomiadaSaúde,Lisboa, Maio de 1985.

- Deb, P. and A.M. Holmes (2000) Estimates of use and costs of behavioural health care: a comparison of standard and finite mixture models. Health Economics, 9, 475-489.
- Deb, P. And P.K. Trivedi (1997) *Demand for medical services by the elderly: a finite mixture approach.* Journal of Applied Econometrics, 12 (3), 313-336.
- Gravelle, H. (2003) *Measuring income related inequality in health: standardization an the partial concentration index*. Health Economics, 12, 803-819.

Grootendorst, P.V. (1995) A comparison of alternative models of prescription drugs utilization. Health Economics, 4, 183-198.

- Huber, H. (2008) *Decomposing the causes of inequalities in health care use: a micro-simulations approach.* Journal of Health Economics, 27, 1605-1615.
- INSA (2008) InquéritoNacional de Saúde 2005/2006, Lisboa, InstitutoNacional de Saúde Dr. Ricardo Jorge e InstitutoNacional de Estatística
- InstitutoNacional de Estatística (2008) Densidadepopulacionalpor local de residência. Dados estatísticos, Lisboa, InstitutoNacional de Estatística

- Jones, A. M., N. Rice, T. Bagod Uva and S. Balia (2007), Applied Health Economics. London, Routledge.
- Kakwani, N.C., A. Wagstaff and E. Van Doorslaer (1997) Socioeconomic inequalities in health: measurement, computation and statistical inference. Journal of Econometrics, 77(1), 87-104.
- Lauridsen, J., T. Christiansen and U. Häkkien (2004) *Measuring inequality in self-reported health discussion of a recently suggested approach using Finnish data.* Health Economics, 13, 725-732.
- Leu, Robert E. and Martin Schellhorn (2006) The evolution of income-related health inequalities in Switzerland over time. CESifo Economic Studies, 52, 666-690.
- Lourenço, O., C. Quintal, P.L. Ferreira and P.P. Barros (2007) A equidadenautilização de cuidados de saúdeem Portugal: umaavaliaçãoemmodelos de contagem.NotasEconómicas, 25, 6-27.
- Mackenbach, J.P., I. Stirbu, A.J.R. Roskam, M.M. Schaap, G. Menvielle, M. Leinsalu and A.E. Kunst (2008) Socioeconomic inequalities in health in 22 European countries. The new England Journal of Medicine, 358 (23), 2468-2481.
- Morris, S. And M. Sutton and H. Gravelle (2003) *Inequity and inequality in the use of health care in England: an empirical investigation.* Centre for health economics, Technical Paper, 2, University of York.
- Mullahy, J. (1997) *Heterogeneity, excess zeros, and the structure of count data models.* Journal of Applied Econometrics, 12, 337-350.
- Or, Z., F. Jusot and E. Yilmaz (2008) Impact of health care system on socioeconomic inequalities in doctor use. IRDES. Pereira, J. (1990), Equity objectives in Portuguese Health Policy. Social Science Medicine, 31(1), 91-94.

- Pereira, J. (1992) Horizontal equity in the delivery of health care in Portugal. Revista Portuguesa de SaúdePública, 10, 3.
- Pereira, J. (1993), What does Equity in Health Mean. Jnl Soc. Pol., 22(1), 19-48. Cambridge University Press
- Pereira, J. and C.G. Pinto (1993) *Equity in the finance and delivery of health care: an international perspective*. Portugal In A. Wagstaff, E. van Doorslaer and F. Rutten ed. Lit., Oxford, Oxford University Press.
- Pereira, J., A. Correia de Campos, M.F. Cortês and C. Costa (1985) Equidade Geográfica no Sistema
- Simões, A.P., A.T. Paquete and M. Araújo, *Equidade horizontal no acesso a consultas de clínicageral, cardiologia e medicinadentáriaem Portugal.* Revista Portuguesa de SaúdePública, 26, 1.
- Van Doorslaer, E. and X. Koolman (2004) *Explaining the differences in income-related health inequalities across European countries.* Health Economics, 13 (7), 609-628.
- Van Ourti, T. (2004) Measuring horizontal inequity in Belgian health care using a Gaussian random effects two part count data model. Health Economics, 13, 705-724.
- Wagstaff, A. and E. Van Doorslaer (2000) *Equity in health care finance and delivery*. In A.J. Culyer and J.P. Newhouse (eds), Handbook of health Economics, New York, Elsevier, 1803-1862.
- Windmeijer, F.A.G. and J.M.C.S. Silve (1997) *Endogeneity in count data models: an application to demand for health care*. Journal of Applied Econometrics, 12, 281-294.

Definitions

- Equity differences in utilization and need that are justifiably caused
- Equality differences in utilization independently of their nature

 \rightarrow Income-related inequality in health care does not imply inequity in health care

Barriers to access - obstacle to an individual have a first contact with the health care system