Faculdade de Economia — Universidade Nova de Lisboa

"A dimensão óptima do hospital público português"

Autor: André Pacheco Fortuna

Orientador: Professor Doutor Pedro Pita Barros

0. Resumo

- . Contexto e motivação
- 2. Enquadramento teórico
- Resultados empíricos:
 - Óptimo estimado
 - Economias de escala
- 4. Possíveis aplicações
- 5. Conclusões e considerações finais

1. Contexto e motivação

- Contexto de intensa reforma estrutural (e infraestrutural)
 - Empresarialização (Entidades Públicas Empresariais, SA/EPE)
 - Fusões (Centros Hospitalares, CH; Unidades Locais de Saúde, ULS)
 - Construções (algumas sob Parcerias Público-Privadas, PPP)
- Motivação geral
 - Política: Despesa crescente com saúde (e hospitais), em % do PIB
 - Científica: Falta de trabalhos empíricos sobre Portugal (e nova metodologia)
 - Económica: "Óptimos" de referência para reconfiguração da rede hospitalar

2. Enquadramento teórico

- Função-custo híbrida (fundada na Teoria da Produção; ajustável)
 - Componente estrutural quadrática (inspirada em Preyra e Pink, 2006)
 - Outputs e interacções (INP, EMO, AMB)
 - Factor fixo e interacções (BEDOR=número de camas*taxa de ocupação)
 - Componente ad-hoc
 - Dummies anuais
 - Dummies de estrutura (central, universitário, edifícios não contíguos, EPE)
 - Indicador de qualidade de resultados (taxa de letalidade ajustada pelo case-mix)

$$C(Y,B,Q) = \alpha_0 + \sum_{i=1}^{m} \alpha_i Y_i + \sum_{i=1}^{m} \sum_{j=1}^{m} \alpha_{ij} Y_i Y_j + \beta_1 B + \beta_2 B^2 + \sum_{i=1}^{m} \gamma_i B Y_i + \lambda Q + \sum_{d=1}^{n} \partial_d D_d$$

3. Resultados empíricos: óptimo estimado

- Estimar função-custo de curto-prazo
 - Painel de 74 hospitais e 5 centros hospitalares, seguidos de 2003 a 2006
 - Modelo estimado por máxima verosimilhança, efeitos aleatórios
- Derivar óptimo CPO em relação ao factor fixo (BEDOR)

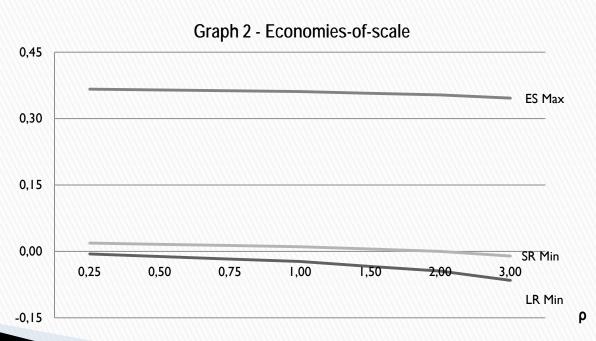
$$Beds^* = (1/OR^*)[(\beta_1 + \gamma_1 INP + \gamma_2 EMO + \gamma_3 AMB)/(-2\beta_2)]$$

- Ajustar óptimo através de taxas de ocupação mais realistas:
 - Prevalecentes (ex. média)
 - Referência (ex. 85%, de acordo com Bagust et al., 1999)
 - Desejadas (ex. gestão interna)

3. Resultados empíricos: óptimo estimado

Table 2 - Short-run and Long-run cost-functions

	Sho	ort-run	(SR)	SRC	Long-run (LR)
C	Coefficient	S	tandard error	Coefficient	Coefficient
Constanta	-10,00	*	3,23	-44,65	-5,94
INP	211,38	*	48,33	1.003,98	313,83
EMO	95,71	*	29,41	196,66	108,76
AMB	1.505,82		1.340,18	-6.065,60	527,15
INP ²	-0,0031	*	0,0008	-0,0031	-0,0000
INPxEMO	-0,0010	*	0,0003	-0,0010	-0,0002
INPxAMB	0,0524	*	0,0119	0,0524	-0,0064
EMO ²	0,0001		0,0001	0,0001	0,0001
EMOxAMB	0,0138	**	0,0064	0,0138	0,0063
AMB ²	-0,2063	**	0,0964	-0,2063	0,0743
BEDOR	55.236	**	27.125		
BEDOR ²	-894	*	174		
BEDORXINP	3,3163	*	0,6822		
BEDORxEMO	0,4224	*	0,1439		
BEDORxAMB	-31,6796	*	6,1897		
d2004a	1,06	**	0,54		
d2005a	2,43	*	0,60		
d2006a	3,21	*	0,66		
Qa	414	*	161	414	414
dcenta	21,40	*	3,66	21,40	21,40
dteacha	45,00	*	11,10	45,00	45,00
dncba	7,55	*	2,36	7,55	7,55
depea	8,82	*	2,46	8,82	8,82
OPTIMUM SIZE					
100% OR		233			
85% OR		274		239	Beds*
MEAN OR		315			


a in million €; * significant at 1%; **significant at 5%; ***significant at 10%

3. Resultados empíricos: economias-de-escala

Medida de economias de escala (ES):

$$ES(\rho,N) \equiv 1 - \frac{\tilde{c}(\rho_{Y},\rho_{B},\rho_{Q})}{N\tilde{c}(\rho_{N'}^{Y}\rho_{N'}^{B}\rho_{N}^{Q})}$$

- ES de curto-prazo se C é a função-custo SR estimada
- ES de longo-prazo se C é a função-custo LR derivada (a partir de SR)

4. Possíveis Aplicações

- Fusão I: Centro Hospitalar do Nordeste (CHNE)
- Fusão 2: Centro Hospitalar de Lisboa Ocidental (CHLO)
- Construção: impacto do novo hospital de Loures na produção do hospital de Santa Maria (HSM).

Economias de Escala – fusões e construções

			F	- unção-custo SR		Função-custo LR
Dados	ρ	ρxBEDOR	ES Min	Poupança (milhões de €/ano)	ES Min	Poupança (milhões de €/ano)
CHNE	≈1,5 [#]	345	0,16	3,9	-0,017	-0,4
CHLO	≈3#	711	0,078	12	0,02	3,2
2/3 HSM*	≈3,75 ^{##}	892	-0,005	1,0	-0,005	1,1

[#] dados de 2003; ## dados de 2006

5. Conclusões e considerações finais

- Dimensão óptima estimada do hospital público português é de 233 camas, para taxa de ocupação hipotética de 100%. Óptimo a ajustar por taxas de ocupação prevalecentes, de referência, ou internamente estipuladas;
- Espaço para economias de escala de curto-prazo até ao dobro do "hospital médio".
 Deseconomias de longo-prazo para todos os níveis de produção;
- Ganhos potenciais de curto-prazo para o CHNE e CHLO, antes da sua criação;
 CHLO é potencialmente sustentável no longo-prazo, CHNE não é;
- ▶ HSM mais eficiente em termos de escala contraindo em 1/3 a sua produção;
- **Em suma:** Hospitais públicos mostram-se ineficientes em termos de escala. Reconfiguração justificada, mas carece de mais suporte técnico.

5. Conclusões e considerações finais

- Valores de referência não são uma panaceia em questões de eficiência. Mas é melhor viver com do que sem eles!
 - Ferramenta de análise geral (ex. aplicável a sub-amostras de hospitais por categoria administrativa, intervalos de dimensão, etc)
 - Melhorias no modelo dependem de melhorias na compilação de dados (ex. hospitais públicos ainda não funcionam em rede).

Obrigado pela atenção!

Apêndice 0

- Função-produção VS Função-custo
 - Orçamentos credíveis
 - Gestores maximizam serviço

Hospitais minimizam custos

pela Teoria da

dualidade

Função-custo representa a fronteira de produção tecnicamente eficiente

- Função-custo de Curto-prazo VS Longo-prazo
 - Estimar função-custo de curto-prazo (SR) C(Y,K)
 - Derivar função-custo de longo-prazo (LR) C(Y,K*), onde K* : δ C(Y,K)/ δ K=0
- Formas Funcionais Estruturais/Teóricas VS Ad-hoc
 - Estruturais quadrática a la Preyra and Pink (2006)
 - Ad-hoc para melhor reflectir a tecnologia subjacente

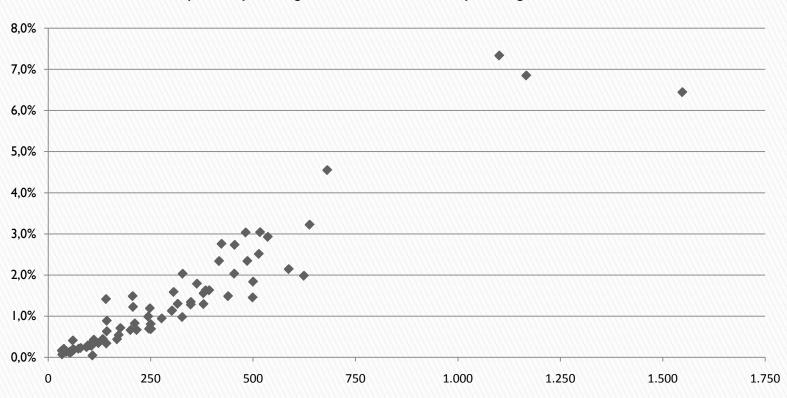

Apêndice 1 – Estatísticas descritivas

Table 1 - Descriptive statistics (280 observations – full sample)

Variable	Description	Mean	S.D.	Min.	Max.
С	Sum of accounting costs (in million €) - (66-amortizations) - (68-financial costs and losses) - (69-extraordinary costs and losses)	58,3	63,1	1,70	311
INP	Number of inpatient days x inpatients case-mix index	95.653	108.962	1.230	599.516
EMO	Number of emergency episodes + number of outpatient visits	194.792	149.008	4.294	756.928
AMB	Number of programmed ambulatory surgeries	1.210	1.803	0	13.794
BEDS	Number of operating beds	310	278	8	1.548
BEDOR	Number of operating beds x beds occupancy-rate	239	223	4	1.214
CMI	Inpatients case-mix index	1,02	0,29	0,58	2,72
OR	Beds occupancy-rate	0,74	0,11	0,20	0,98
ALS	Inpatients average length-of-stay (in days)	7,61	3,13	2,70	47,90

Apêndice 2 - Dispersão

Graph 1 - operating beds and % of total operating costs (in 2004)

Apêndice 3 – Modelo completo

Table 1A2 – Short-run full model

C	7 () () () () () () () () () (Full	
	Coefficient	77777777	Standard error
Constanta	-12,30	*	3,81
INP	209,51	*	53,34
EMR	164,51	**	78,86
OUT	255,37	\\\\ * \\\\	64,87
AMB	-385,49		1.439,04
CHR	67,01		136,43
INP^2	-0,0017	***	0,0010
INPxEMR	0,0007		0,0007
INPxOUT	-0,0010		0,0010
INPxAMB	0,0200		0,0166
INPxCHR	-0,0018		0,0011
EMR ²	-0,0007		0,0005
EMRxOUT	0,0007		0,0007
EMRxAMB	0,0059		0,0146
EMRxCHR	-0,0028	//// * ////	0,0010
OUT^2	-0,0004		0,0004
OUTxAMB	0,0216	***	0,0127
OUTxCHR	0,0001		0,0019
AMB^2	-0,1744	***	0,1039
AMBxCHR	0,0182		0,0436
CHRxCHR	0,0016		0,0017
BEDOR	24.453	**	29.280
BEDOR^2	-514	**	220
BEDORXINP	1,8136		0,8672
BEDORXEMR BEDORXOUT	-0,4428		0,4266
BEDORXOUT	0,5845 -17,4683	**	0,4226 7,9657
BEDORXAMB	1,0033	***	0,5458
d2004 ^a	0,10		0,5438
		**	
d2005a	1,35		0,61
d2006a	1,97	.*\	6,69
Qa .	402	**	161
dcent ^a	17,50	*	4,28
dteach ^a	55,10	*	12,20
dncba	5,60	**	2,27
depea	7,64	*	2,60
OPTIMUM SIZE			
100% OR		207	
85% OR		244	
MEAN OR		280	

a in million €; *significant at 1%; **significant at 5%; ***significant at 10%

Apêndice 4A – Análise de robustez

- Análise de robustez do modelo:
 - Robusto ao método de estimação
 - Efeitos aleatórios
 - Efeitos fixos ("within")
 - Robusto às adaptações ad-hoc em relação a Preyra e Pink (2006)
 - Indicador de qualidade
 - Dummies de estrutura
 - Não robusto em relação aos outliers hospitais centrais representam parte significativa da tecnologia dos hospitais públicos
 - Maior complexidade/severidade dos casos tratados
 - Transferências de pacientes
 - Serviços de ensino

Apêndice 4B – Análise de robustez

Table 3 - Robustness Analysis

С	No	bed-	outliers	F	ixed-	effects		PP2	2006
C	Coefficient		Standard error	Coefficient		Standard error	Coefficient		Standard error
Constanta	-8,06	***	4,38	14,2	***	8,09	-3,41		3,01
INP	179,65	***	103	109,95	***	56,54	220,23	*	52,33
EMO	128,35	**	56,13	46,27		47,98	91,41	*	32,41
AMB	-1.983,27		2.392,86	1.593,50		1.477,37	3.755,26	**	1.472,43
INP^2	-0,0031	**	0,0012	-0,0018	***	0,0011	-0,0034	*	0,0008
INPxEMO	-0,0007		0,0006	-0,0011	*	0,0003	-0,0008	**	0,0003
INPxAMB	0,0771	*	0,0279	0,0346	**	0,017	0,5642	*	0,0133
EMO ²	4.93e-06		0,0003	0,0003	*	0,0001	0,0002	*	0,0001
EMOxAMB	0,0226		0,0178	0,0079		0,0069	0,0042		0,0068
AMB ²	-0,4234	**	0,2144	-0,1266		0,1052	-0,0711		0,103
BEDOR	55.578		49.838	68.855	***	35.569	69.359	**	29.041
BEDOR^2	-807	**	359	-681	*	230	-896	*	194
BEDORXINP	3,3813	*	1,1614	2,3504	**	0,945	3,6114	*	0,7583
BEDORXEMO	0,1954		0,517	0,345	**	0,1529	0,2205		0,1526
BEDORxAMB	-33,692		20,622	-21,2898	*	8,1859	-33,5906	*	6,8602
d2004a	0,5		0,84	1,12	***	0,6	0,55		0,61
d2005a	1,48		0,93	3,38	*	0,69	2,11	*	0,67
d2006a	3,07	*	1,01	4,03	*	0,78	2,57	*	0,74
Qa	348		270	226		199			
dcenta	13,9	*	3,18						
dteacha									
dncba	5,15	**	2,49						
depea	4,69	***	2,66						
OPTIMUM SIZI	Ē								
100% OR		\\17	78		2	46		23	33
85% OR		20				39	274		
MEAN OR		24	13		3	33		3	14

³ in million €; *significant at 1%; **significant at 5%; ***significant at 10%

Apêndice 5A – Análise de sensibilidade

able 2A3 - Sensitivity Analysis

С	C+D				D+D1			SPA		
	Coefficient		Standard error	Coefficient		Standard error	Coefficient		Standard error	
Constanta	-15,9	*	5,66	-6,38	***	3,84	-7,48	**	3,32	
INP	219,15	*	56,87	250,06		221,15	361,95	*	96,44	
EMO	88,25	**	36,19	165,89	*	57,92	135,33	*	34,04	
AMB	1.064,97		1.573,48	-3.176,02	***	1.728,96	6.811,97	*	1.814,59	
INP^2	-0,0029	*	0,0009	-0,0103		0,009	-0,0028	**	0,0013	
INPxEMO	-0,001	*	0,0003	-0,0018		0,0016	-0,0012	*	0,0004	
INPxAMB	0,051	*	0,0133	0,0325		0,0823	0,0641	*	0,0207	
EMO ²	0,0001		0,0001	0,0001		0,0002	0,0004	*	0,0001	
EMOxAMB	0,0123	***	0,0073	0,0218	**	0,0109	-0,0527	*	0,0144	
AMB^2	-0,1691		0,1081	-0,5832	**	0,2613	0,8575	*	0,2358	
BEDOR	73.056	**	32.495	-618		82.986	-27.282		44.514	
BEDOR^2	-888	*	198	-1.781	***	1.031	-922	*	279	
BEDORXINP	3,1689	*	0,7808	9,0208		6,0469	3,1763	*	1,1511	
EDORxEMO	0,4349	*	0,16	0,3752		0,5488	0,4086	**	0,1872	
EDORxAMB	-29,7325	*	6,9691	-13,1248		27,5044	-19,0063	**	8,2473	
d2004a	1,53	**	0,72	0,11		0,47	1,5	*	0,5	
d2005a	3,39	*	0,81	1,13	**	0,53	1,82	*	0,53	
d2006 ^a	4,3	*	0,93	2,48	*	0,6	2,86	*	0,59	
Qa	873	*	258	190		140	193		127	
dcent	22,6	*	4,33				12,3	**	5,01	
dteacha	50,4	*	13				60,9	*	12,2	
dncba	7,65	*	2,7	8,86	*	2,11	-0,09		4,17	
depea	9,2	*	2,91	2,43		3,37				

in million €; *significant at 1%; **significant at 5%; ***significant at 10%

Apêndice 5B – Análise de sensibilidade

Table 4 - Optimum new function, new sample / Optimum SR function, new sample

	C+D		D+D1		SPA		No bed-outliers	
100% OR	292	287	160	161	150	202	178	179
85% OR	344	338	188	189	176	238	209	211
MEAN OR	385	378	222	224	211	285	243	245

C – Central; D – District; D1 – District Level 1; SPA – publicly-managed; No bed-outliers – 32<beds<588

Apêndice 6 – Economias de escala

Table 5 – Short-run economies-of-scale (N=2)

ρ	ρxBEDOR	ES Min	Savings (million€/year)	ES Max	Savings (million€/year)
.25	60	0,019	0,2	0,360	18,4
.5	120	0,016	0,4	0,359	36,8
.75	179	0,013	0,5	0,358	55,1
1	239	0,011	0,5	0,357	73,3
1.5	359	0,005	0,4	0,356	109,6
3	717	-0,010	-1,6	0,350	216,7

Table 6 - Long-run economies-of-scale (N=2)

ρ	ρxBEDOR [*]	ES Min	Savings (million€/year)	ES Max	Savings (million€/year)
.25	58	-0,006	-0,1	0,366	19,1
.5	117	-0,012	-0,3	0,365	38,1
.75	175	-0,017	-0,6	0,363	57,0
1	233	-0,023	-1,1	0,361	75,7
1.5	350	-0,034	-2,6	0,357	112,7
3	699	-0,066	-10,3	0,346	220,2